Pages 181-188

MECHANISM OF T CELL PROLIFERATION IN VIVO: ANALYSIS OF IL-2 RECEPTOR EXPRESSION AND ACTIVATION OF c-myc and c-myb ONCOGENES DURING LYMPHATIC REGENERATION

M. Sihvola*,1, L. Sistonen**, K. Alitalo** and M. Hurme*

*Department of Bacteriology and Immunology and the **Department of Virology, University of Helsinki, SF-00290, Helsinki, Finland

Received February 17, 1989

Summary The mechanism of T cell proliferation was studied using in vivo lymphatic regeneration as the model. Lymphatic regeneration was induced by injecting a sublethal dose (300 mg/kg) of cyclophosphamide (Cy) into mice. Majority of the regenerating splenic T cells were found to be in the cell cycle, nearly 30 % being found in S/G2+M phases resembling the ratio obtained for mitogen activated T cells in vitro. Expression of interleukin-2 receptor (IL-2R) was defined by the monoclonal anti-IL-2R antibody, AMT-13. Only 1-3% of regenerating T cells were IL-2R positive (while about 30 % of the in vitro activated T cells were IL-2R positive). Accordingly, these cells did not respond to IL-2 in vitro. However, when the freshly isolated regenerating T cells were cultured in the presence of Con A or PMA + ionophore A 23187, IL-2R was readily induced. The regenerating T cells were further analyzed for the expression of the cellular oncogenes c-myc and c-myb. These cells expressed about three times more c-myb mRNA than Con A-stimulated T cells and the levels were comparable to those seen in thymocytes. By contrast, the amount of c-myc mRNA was similar in the regenerating T cells and in Con A-activated T cells, but weak or barely detectable in splenocytes and thymocytes. Taken together, our results imply that the vigorous T cell proliferation during cyclophosphamide-induced lymphatic regeneration is independent of the IL-2/IL-2R hormone system, like T-cell precursor proliferation in the thymus, and is characterized by both high c-myb expression typical for thymocytes and high c-myc expression typical for in vitro proliferation-activated T cells. © 1989 Academic Press, Inc.

The peripheral T cell population is maintained constant throughout the adult life. New T cells are continuously produced in the thymus but vast majority of them die *in situ*, and only ca. 1% of thymocytes leave the thymus per day corresponding 2-3% of peripheral T cells (1). Although part of the peripheral T cells are long-lived cells (2-4), 30-50% of them belong to a short-lived cell population (3,5,6). Thus, thymic emigrants cannot be solely responsible for the renewal of peripheral T cell pool, but post-thymic expansion of T cells occurs (6-11).

Of the mechanisms which drive T cells to divide, interleukin-2/interleukin-2 receptor (IL-2/IL-2R) hormone system is well characterized (12-14). Thus, in vitro T cell proliferation has been shown to be strictly dependent on the induction of IL-2 production and IL-2R expression and the consequent IL-2/IL-2R interaction. There are, however, some antigen-specific T cell lines which have shown to proliferate indendently of IL-2 in vitro (15,16). The role of IL-2/IL-2R in regulating T

¹Correspondence: M. Sihvola, Department of Bacteriology and Immunology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland,

Abbreviation used in this paper: Cy, cyclophosphamide; IL-2R, interleukin-2 receptor; NW, nylon wool; SI, stimulation index.

cell division *in vivo* is not precisely known, and conflicting results exist (17-21). In the thymus, cell proliferation has been shown to occur independently of IL-2/IL-2R interaction (22-24).

We have studied the mechanism of peripheral T cell poliferation using a model of lymphatic regeneration after a sublethal dose of cyclophosphamide (300 mg/kg). The cell cycle distribution of regenerating T cells and the proportion of cells expressing the IL-2 receptor was evaluated. The cells were further analyzed for the expression of the cellular oncogenes c-myc and c-myb since these oncogenes have been implicated in T cell proliferation and differentiation (25-30). We show here that a large number of the regenerating T cells, 8 days after administration of Cy, is found to be in the cell cycle, still only a few of them express the IL-2 receptor. Furthermore, these cells do not respond to exogenous IL-2. When stimulated *in vitro*, however, IL-2R is induced. Thus these data indicate that the regenerating T cells proliferate independently of the IL-2/IL-2R system. The regenerating T cells are also characterized by the high expression of both c-myc and c-myb oncogenes.

MATERIALS AND METHODS

Mice. (CBAxC57BL/6)F₁ mice were obtained from the breeding unit of this department and were used at the age of 2-4 months.

Administration of cycloposphamide (Cy). Cy (Syklofosfamid, Lääke Oy, Turku, Finland) was dissolved in sterile water immediately before use, and a sublethal dose (300 mg/kg) was injected intraperitoenally.

Preparation of cells. Spleens were removed aseptically and single cell suspensions were prepared (in RPMI 1640 medium supplemented with 20mM HEPES and 5% fetal calf serum (FCS; Flow Laboratories, Irvine, Scotland)). T cells were prepared by passing spleen cells through a nylon wool column twice according to the method described by Julius et al (31).

Cell cultures. The *in vitro* cultures were carried out in RPMI 1640 medium supplemented with 10% FCS, L-Glutamine, 5x10⁻⁵ M 2-mercaptoethanol and antibiotics at 37 °C, in a 5% CO₂ atmosphere. As stimulants, we used 4 μg/ml Concavalin A (Con A; Pharmacia, Uppsala, Sweden), and 10 ng/ml phorbol myristate acetate (PMA; Sigma Chemical Co., St. Louis, Mo) together with 1 nM ionophore A 23187 (Calbiochem, San Diego, Ca), and recombinant IL-2 20 U/ml (Genzyme Corp., Boston, Ma). Cells (1x10⁵) were cultured in flat-bottomed microtitre plates (Costar 3595, Cambridge, Ma) for 24-48 h, and they were pulsed with 1 μCi ³H-Thymidine (24 Ci/mmol; Radiochemical Center, Amersham, UK) 6 h before harvesting on filters with an automatic cell harvester (Dynatech). The filters were air-dried and counted in a liquid scintillation counter. The data are expressed as mean of cpm of triplicate cultures. In some experiments, the stimulation index (SI) was calculated as cpm in stimulated cultures/cpm in unstimulated cultures.

Antibody treatments. Monoclonal anti-mouse interleukin-2 receptor antibody (clone AMT-13 (32,33), and monoclonal anti-Thy-1.2 (clone F7D5) were kindly provided by Dr Tibor Diamantstein (Freie Universität, Berlin, FRG) and Dr Elizabeth Simpson (Clinical Research Center, Harrow, UK), respectively. For staining, the cells (10⁷ /ml) were first incubated for 30 min at 4 °C with the appropriate antibody, washed twice and incubated for an additional 30 min at 4 °C with fluorescein (FITC)-conjugated anti-rat (for AMT-13) or anti-mouse IgG (both products of Cappel Worthington, Malvern, Pa). After washings, cells were analyzed or isolated with the fluorescence-activated cell sorter FACS IV (Becton Dickinson, Sunnyvale, Ca).

Cell cycle analysis. For the determination of the DNA content of cells, they were stained with 50 μ g/ml of the DNA binding dye propidium iodide (Sigma) in culture medium containing 0,1% NP 40 (34).

RNA preparation and analysis. The isolation of polyadenylated RNA from cell lysates was done by oligo(dt) chromatography as described (35). RNA was quantitated spectrophotometrically at 260 nm, samples were size-fractionated on 0,8% formaldehyde-agarose gels, transferred to a nylon membrane (Pall, Glen Cove, Ny), and baked under vacuum at 80 °C for 2 h. Filters were hybrizied overnight at 42 °C with ³²P-labelled probes c-myc insert of the plasmid pSVc-myc-1 (41029, American Tissue Type Collection, Rockville, MD) (36) and with PMB96, a full-lenght c-myb cDNA (37), a kind gift from Dr Thomas Gonda (Melbourne Tumour Biology

Branch, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Australia). After washings in 1xSSC (150mM NaCl, 15mM sodium citrate), 0,1% SDS at 60 °C, filters were exposed to Kodak AR X-Omat films at -70°C. Autoradiograms were analyzed by laser-densitometric scanning (LKB, Uppsala, Sweden).

T cells in the experiments were derived from spleens of 20-30 mice, and each experiment reported was repeated at least three times with concordant results. The values are given from representative experiments.

RESULTS

Cell-cycle analysis of regenerating T cells. Injection of mice with a sublethal dose of Cy (300 mg/kg) causes a rapid involution of the spleen within 1-2 days (decline from the normal 60-100x10⁶ cells to 1-2x10⁶ cells per spleen by day 2). This is followed by an extensive regeneration phase on days 6-9 after Cy administration (increase to 60-80x10⁶ cells by day 8 after Cy) (38, 39).

The cell cycle distribution of regenerating splenic T cells was analyzed 8 days after Cy. As shown in Table 1, nearly 30 % of regenerating T cells were found to be in the S/G2+M phases resembling the cell cycle status of T cells activated with Con A for 24 h *in vitro*. Furthermore, only a small proportion of regenerating and Con A-activated T cells were found to be resting as judged by the acridine orange staining which separates resting cells from the cells entered the cell cycle (40; data not shown). As normal controls, we used 3-4 months old mice in which 7% of splenic T cells and 9% of thymocytes were in the S/G2+M phases. In thymocytes derived from young, 2-3 weeks old animals the proportion of cells in the S/G2+M phases was slightly higher (14%) than in the adults. To verify that cycling, NW-fractionated regenerating spleen cells were T cells, Thy-1+ cells were isolated with FACS and analyzed by their cell cycle distribution; the proportion of cells in the resting

Table 1. The distribution of regenerating T cells over the cell cycle

Cell populations *	Cell cycle distribution (%)#			
	G _o /G ₁	s	G2M	
cells (adult)	92,5	7,3	0,2	
ymocytes (adult)	90,6	8,2	1,1	
ymocytes (2-3 weeks old)	85,4	12,8	1,8	
Con A blasts	77,0	22,6	0,8	
cy day 8 T cells	72,6	24,2	3,2	
Cy day 13 T cells	93,6	5,6	0,6	

 $^{^{\}circ}$) T cells derived from spleens of normal adult mice, or from mice injected with 300 mg/kg of Cy 8 or 13 days previously were tractionated in NW-columns. Thymocytes isolated from adult mice or young, 2-3 weeks old animals were analyzed immediately. Con A blasts were normal spleen cells activated with 4 μ g/ml Con A for 24 h.

^{#)} Percentage of cells in different phases was determined by propidium iodide staining followed by FACS analysis.

Table 2. IL-2 receptor expression on regenerating T cells

Cell population	IL-2 receptor expression (%)		
thymocytes	1,2		
normal T cells	1,5		
Cy day 8 T cells	3,1		
Cy day 13 T cells	2,0		

¹x10⁶ freshly isolated thymocytes or NW-fractionated splenic T cells derived from normal mice or from mice treated with Cy 8 or 13 days previously were stained with the monoclonal AMT-13 anti-IL-2R antibody (plus FITC-coupled anti-rat IgG) and the percentage of IL-2R expressing cells was estimated with FACS.

state as well as the number of cells in the S/G₂+M phases was found to be of the same order as that obtained with NW-fractionated cells (data not shown).

IL-2 receptor expression on regenerating T cells. In order to find out whether T cell proliferation during regeneration would be dependent on the IL-2/IL-2R system, expression of the IL-2 receptor was tested by immunofluorescence and FACS using the monoclonal anti-IL-2 receptor antibody, clone AMT-13, which recognizes the 55 kD chain of the IL-2 receptor (32,33).

Table 3. Proliferation of regenerating spleen cells in vitro in the presence of IL-2

	³ H-Thymidine incorporation (cpm) after culturing				
		SI			SI
normal spleen cells	-	444		1258	
·	IL-2	1150	2,6	3438	2,7
Cy day 8 spleen cells	-	5036		3648	
	IL-2	8564	1,7	8412	2,3
Cy day 13 spleen cells	-	2138		1058	
	IL-2	4356	2,0	2900	2,7

 $^{10^5}$ spleen cells derived from normal mice or mice treated with 300 mg/kg Cy 8 or 13 days previously were cultured in the presence of 20 U/ml IL-2. Cell proliferation was measured by the 3 H-Thymidine incorporation.

SI= cpm of stimulated cultures / cpm of unstimulated cultures

Table 4. IL-2 receptor induction to regenerating T cells

Cell population	Stimulus	IL-2R expression (%)*	
normal spleen cells		3,3	
	Con A	39,9	
	PMA+iono	28,1	
Cy day 8 spleen cells	-	5,1	
	Con A	23,5	
	PMA+iono	22,7	
Cy day 13 spleen cells	-	2,1	
	Con A	19,7	
	PMA+iono	26,2	

^{*) 1}x10⁵ cells were cultured in the presence of 4 µg/ml Con A or 10 ng/ml PMA + 1 nM ionophore A23187 for 24 h and IL-2R expression was analyzed with FACS after staining with the AMT-13 monoclonal anti-IL-2R antibody (plus FITC-coupled anti-rat lgG).

The proportion of IL-2R bearing cells among freshly isolated regenerating T cells was found to be similar to the proportion of IL-2R positive cells among normal splenic T cells ie. 1-3% (Table 2) (the variation between different experiments being 1.5-2.8 % in T cells derived from the normal mice versus 0,2-3,1 % in T cells derived from the regenerating spleens). If regenerating cells were cultured *in vitro* in the presence of exogenous IL-2 for 24-48 h, no further growth was noticed as judged by the SI (Table 3). The higher ³H-Thymidine incorporation found in regenerating cells when compared with normal spleen cells was presumably due to the high cell division *in vivo* which still continued *in vitro* for some days (41). Addition of anti-IL-2 antibody to these cultures had no effect on the spontaneous proliferation of regenerating cells (data not shown).

The IL-2R was, however, readily induced if the regenerating T cells were cultured in the presence of Con A or PMA + ionophore (Table 4). Thus these data indicate that during lymphatic regeneration peripheral T cells were able to proliferate without the IL-2/IL-2R interaction.

The activity stage of regenerating T cells indicated by the expression of cellular oncogenes. Expression of cellular oncogenes c-myc and c-myb in regenerating T cells was studied by Northern blotting and hybridization analysis of poly(A)+RNA (Fig. 1). The accumulation of c-myc and c-myb mRNA in regenerating T cells was compared with the corresponding mRNA levels in resting T cells, thymocytes, and splenic lymphocytes activated with Con A for 4 h or for 24 h. Regenerating T cells were found to express elevated levels of mRNA for both of these oncogenes. The level of c-myc mRNA was nearly the same in the regenerating T cells and in Con A-activated T cells, but weak or barely detectable in the splenocytes and thymocytes, respectively. By contrast, the expression of c-myb mRNA in the regenerating T cells was about 3-4 times greater

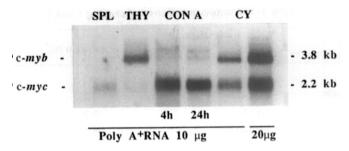


Figure 1. Northern blotting and hybridization analysis of c-myc and c-myb mRNAs from resting splenic T cells (SPL), thymocytes (THY), T cells activated with Con A for 4 h and for 24 h (CON A), and from regenerating T cells (CY). 10 μg or 20 μg of mRNA was applied to each lane and fractionated on 0,8% agarose-formaldehyde gel, transferred to nylon membrane, and then hybrizied to nick-translated probes.

than in Con A-stimulated cells and comparable to c-myb expression seen in thymocytes. Besides the major 3.8 kb c-myb species, other fainter c-myb RNA signals were observed in the 4.2-4.5 kb mobility region, especially in the Con A-stimulated T cells. These may represent c-myb RNA:s initiated in alternative upstream promoters which have been recognized in lymphocytes (42,43). By day 13 after Cy, the c-myc and c-myb mRNA levels had returned to the baseline level found in resting T cells (data not shown).

DISCUSSION

The data of the present study demonstrate that peripheral T cells have the capacity to proliferate vigorously without a known antigen challenge, and more importantly, that this proliferation is not dependent on the IL-2/IL-2R interaction.

In contrast to the B cell compartment which is continuously seeded from the bone marrow with 20-30x10⁶ cells per day (44), the influx of T cell progenitors from the bone marrow to the thymus, and the consequent emigration from the thymus to the periphery involves only a small number of cells (1,45). It has been calculated that thymic emigrants cannot maintain the homeostasis of the peripheral T cell compartment (1,6-8,44-45). Post-thymic expansion defined as an antigen-independent expansion of thymus-educated T cells is thus probably contributing to the maintenance of the peripheral T cell pool. It is not, however, known whether all T cells have a renewal capacity (7). We have earlier shown that adult thymectomy, one week before administration of Cy had no effect on the regenerating capacity of T cells (39) arguing against the recent thymic origin of the regenerating cells.

The mechanism by which peripheral T cell expansion occurs is not yet understood. At present, the proliferation of mature T cells is thought to be strictly dependent on the IL-2/IL-2R interaction (12-14), IL-2 being the driving signal from the G₁ phase to the S phase (46). However, this model is based on *in vitro* experiments. The *in vivo* of IL-2 has been questioned (18,47,48). For example, Bandeira et al (18) noticed that *in vivo* mitogen-activated T cells did not respond to IL-2 *in vitro*.

When studying regenerating T cells after Cy injection, we noticed that they resemble in many aspects (eg. LDH isoenzyme pattern) more mature T cells than thymocytes (39). Now we have

demonstrated that these cells are actively dividing, their distribution over the different stages of the cell cycle resembling the cell cycle distribution of *in vitro*-activated T cells. However, the expression of the IL-2 receptor on regenerating T cells was similar to that of normal resting splenic T cells (Table 2). Like the few IL-2R positive thymocytes which are unable to respond to IL-2 *in vitro* (24), regenerating T cells did not proliferate in response to exogenously added IL-2 (Table 3). Thus the few IL-2R positive cells among regenerating cells could certainly not be responsible for the extensive T cell proliferation occuring during regeneration. IL-2R was, however, readily inducible after stimulation by lectin or PMA + calcium ionophore, speaking against the possibility that these cells would be unable to express IL-2R (Table 4). These data indicate that the IL-2/IL-2R interaction may not be the only mechanism which drives T cells to divide, and furthermore, the other mechanism(s) can induce proliferative responses as strong as the IL-2/IL-2R dependent mechanism. Participation of other growth factors eg. IL-4 or GM-CSF, however, has not been excluded.

Proto-oncogenes in T cell growth control have been implicated (49-50); the c-myc oncogene is inactive in resting (Go) cells, rapidly induced upon cell cycle activation and relatively evenly expressed during the cell cycle (25-28,51). In regenerating T cells the enhanced expression of c-myc oncogene resembles that seen in in vitro activated T cells (Fig. 1). Expression of c-myb is also associated with the progression of the cell cycle in in vitro activated cells, but unlike c-myc, which is one of the early genes induced, c-myb is activated in the late G_1 phase (27,28,46). Thymocytes are known to contain expectionally high amounts of c-myb mRNA despite of the relatively low amount of thymocytes in the S/G₂ + M phases (29,30). We found that expression of c-myb mRNA was elevated also in regenerating T cells; their c-myb mRNA content was significantly greater than in Con A blasts although majority of both kind of cells was cycling and the proportion of cells in the S/G₂ +M phases were equal. It could be speculated that c-myb has some function in the maturation of regenerating T cells as suggested in the case of thymocytes (29,30). Data demonstrating that some IL-2 independent T cell lines accumulate high amounts of c-myb mRNA, and on the other hand IL-2 dependent cell lines depleted of IL-2 increase their c-myb expression (52) suggests that c-myb expression is somehow associated with IL-2 independent proliferation mechanisms.

ACKNOWLEDGMENTS

This work was supported by grants from the Sigrid Juselius Foundation and from the Academy of Finland. The authors wish to acknowledge Ms Monica Schoultz for performing the FACS analysis.

REFERENCES

- 1. Scollay, R.G., Butcher, E.C., and Weissman, I.L. (1980), Eur. J. Immunol. 10, 210-218
- 2. Miller, J.F. A.P., and Mitchell, G.F. (1969) Transplant. Rev. 1, 3-42
- 3. Sprent, J., and Basten, A. (1973) Cell Immunol. 7, 40-59
- 4. Wallis, V.J., Leuchars, E., Chaudhuri, M., and Davies, A.J.S. (1979) Immunology 38,163-171
- 5. Rocha, B., Larsson, E.L., and Freitas, A.A. (1984) Scand. J. Immunol. 19, 315-321
- 6. Rocha, B., Freitas, A.A., and Coutinho, A. (1983) J. Immunol. 131, 2158-2164
- 7. Stutman, O. (1986) Immunol. Rev. 91,159-194
- 8. Miller, R.A., and Stutman, O. (1984) J. Immunol. 133, 2925-2932

- 9. Galli, P., and Dröge, W. (1980) Eur. J. Immunol. 10, 87-92
- 10. Piquet, P-F., Irle, C., Kollatte, E., and Vassalli, P. (1981) J. Exp. Med. 154, 581-593
- 11. Rocha, B.B. (1987) J. Immunol.139, 365-372
- 12. Smith, K.A. (1984) Ann. Rev. Immunol. 2, 337
- 13. Robb, R.J., Munck, A., and Smith, K.A. (1981) J. Exp. Med. 154, 1455-1474
- 14. Cantrell, D.A., and Smith, K.A. (1986) Science 233, 203-206
- 15. Moldwin, R.L., Lancki, D.W., Herold, K.C., and Fitch., F.W. (1986) J. Exp. Med. 163, 1566-1582
- 16. Kelso, A., and Glasebrook, A. (1984), J. Immunol. 132, 2924-2931
- 17. Butler, L.D., DeRiso, P.E., Marder, P., and Scheetz., M.E. (1987) J. Immunol. 138, 470-477
- 18. Bandeira, A., Larsson, E.L., Forni, L., Pereira, P., and Coutinho, A. (1987) Eur. J. Immunol.
- 17, 901-908
- 19. Black, C.D.V., Barbet, J., Kroczek, R.A., and Shevach, E.M. (1988) Cell. Immunol. 111, 420-432
- 20. Kroczek, R.A., Black, C.D.V., Barbet, J., and Shevach, E.M. (1987) J. Immunol. 139, 3597-3603
- 21. Laing, T., and Weiss, A. (1988) J. Immunol. 140, 1056-1062
- 22. Raulet, D.H. (1985) Nature 314, 101-103
- 23. Lugo, J.W., Krishnan, S.N., Sailor, R.D., Koen, P., Malek, T., and Rothenberg, E. (1985)
- J. Exp. Med. 161,1048-1062
- 24. Loewenthal, J.W., Howe, R.C., Ceredig, R., and MacDonald., H.R. (1986) J. Immunol. 137, 2579 -2584
- 25. Kelly, K., Cochran, B.C., Stiles, C.D., and Leder, P. (1983) Cell 35, 603-610
- 26. Schneider-Schaulies, J., Hünig, T., Schimpl, A., and Wecker, E. (1986) Eur. J. Immunol. 16, 312-316
- 27. Shipp, M.A., and Reinherz, E.L. (1987) J. Immunol. 139, 2143-2148
- 28. Reed, J.C., Alpers, J.D., Nowell, P.C., and Hoover, R.G. (1986) Proc. Natl. Acad. Sci. USA. 83, 3982-3986
- 29. Thompson, C.B., Challoner, P.B., Neiman, P.E., and Groudine, M. (1986) Nature 319, 374-380
- 30. Sheiness, D., and Gardinier, M. (1984) Mol. Cell. Biol. 4, 1206-1212
- Julius, M.H., Simpson, E., and Herzenberg, L.A. (1973) Eur. J. Immunol. 3, 645-649
- 32. Osawa, H., and Diamantstein, T. (1984b) J. Immunol. 132, 2445-2450
- 33. Osawa, H., and Diamantstein, T. (1985) Eur. J. Immunol. 15, 299-301
- 34. Krishnan, A. (1975) J. Cell Biol. 66, 188-197
- 35. Swab, M., Alitalo, K., Varmus, H.E., Bishop, J.M., and George, D. (1983) Nature 303, 497-501
- 36. Land, H., Parada, L.F., and Weinberg, R.A. (1983) Nature 304, 596-602
- 37. Gonda, T.J., Gough, N.M., Dunn, A.R., and de Blaquiere, J. (1985) Embo J. 4, 2003-2008
- 38. Kolb, J-P.B., Poupon, M-F.M., Lespinats, G.M., Sabolovic, D., and Loisillier, F. (1977) J. Immunol. 118, 1595-1599
- 39. Sihvola, M., and Hurme, M. (1983) J. Immunol. 130, 1077-1083
- 40. Darzynkiewicz, Z., Traganos, F., Sharpless, T., and Melamed, M.R. (1976) Proc. Natl. Acad. Sci. USA 73, 2881-2884'
- 41. Sihvola, M., and Hurme, M. (1984) Immunology 51, 313-318
- 42. Bender, T.P., and Kuehl, W.M. (1986) Proc. Natl. Acad. Sci. USA 83, 3204-3208
- 43. Watson, R.J., Dyson, P.J., and McMahon, J. (1987) Embo J. 6, 1643-1651
- 44. Freitas, A.A., Rocha, B., and Coutinho, A. (1986) Immunol. Rev. 91, 5-37
- 45. Scollay, R., Bartlett, P., and Shortman, K. (1984) Immunol Rev. 82, 79-103
- 46. Stern, J.B. and Smith, K.A.(1986) Science 233, 203-206
- 47. Mitchison, N.A. and Petterson, S. (1983) Ann. Immunol. (Inst. Pasteur) 134D, 37-45
- 48. Kawamura, H., Sharrow, S.O., Alling, D.W., Stephany, D., York-Jolley, J. and Berzofsky, J.A. (1986) J. Exp. Med. 163, 1376-1390
- 49. Kelly, K. and Siebenlist, U.(1986) Ann. Rev. Immunol. 4, 317-338
- 50. Burgess, A.(1985) Immunol. Today 6, 107-112
- 51. Thompson, C.B., Challoner, P.B., Neiman, P.E. and Groudine, M. (1985) Nature 314, 363-366
- 52. Seldin, M.F., Mountz, J.D., Mushinski, J.F., Smith, H.R. and Steinberg, A.D. (1987) Proc. Soc. Exp. Biol. Med. 184, 186-190